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applied to the combination limiter. Fig. 4  Temnporal Instabilities in Traveling- IV (2, 1) 92
shows a photograph of the oscilloscope pres- Wavz Parametric Amplifiers* & o Lo o [Cle, V(5 1)]. @

entation of a 1N23 detector on the output
of the second-stage limiter. The input
pulse, attenuated 53 db, is shown for com-
parison. Measurements indicate that the
total spike leakage is 0.2 erg of energy. The
maximum power available for this particu-
lar test was 25 kw. There were no indica-
tions of either diode or limiter failure, and
it could be reasonably expected that the
combination could withstand higher power.

Fig. 2—Direct output of the gyromagnetic coupling
limiter through a 1N23 detector. Time base is
0.2 usec per square.
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Fig, 3—Characteristics of the subsidiary resonance
first-stage limiter.

Fig. 4—Direct output of the two-stage limiter
through a 1N23 detector. The input attenuated
53 db is shown for comparison. Time base is 0.2
usec per squate.

In conclusion, it has been shown that
receiver protection can be afforded by fer-
rimagnetic limiters. These limiters are pas-
sive, and when used as specified should have
no apparent lifetime limitations.
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The basic traveling-wave parametric
amplifier (TWPA) [1]-{3], as here defined,
consists of an all-pass uniform transmission-
line structure in which the distributed cir-
cuit elements are modulated in time and
space by a progressive pumping wave.
TWPA's, in general, have aroused great in-
terest due to the possibilities of wide-band
amplification, as predicted by coupled mode
theory [2]-[4]. It is the purpose of this com-
munication to show that temporal insta-
bilities exists on the basic TWPA (or its
dual [1}) when the frequency relations are of
the negative-resistance type (the inverting
modulator of Manley and Rowe [6]). It is
found, from the exact solution for time har-
monic waves existing on this line, that under
these conditions waves growing in time are
present, rather than waves growing in dis-
tance along the line.

The exact solution for time harmonic
waves on the uniform transmission line,
which possesses distributed coefficients
periodically modulated in time and space

(Fig. 1), is [7]

Viz,§) = ei@eta S Y eiitkdn (1)
n=—0
where

w=angular frequency of the “signal”
k=propagation wavenumber of the

“signal”
wy=angular frequency of pumping wave
(specified)
k1=propagation wavenumber of pump-
ing wave
=w1/CI
¢’ =phase velocity of pumping wave
(specified).
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Fig. 1—Basic traveling-wave parametric amplifier,

It may be shown that this solution is a
mathematically complete solution and is
valid everywhere except [7], [8] where the
pump phase velocity (¢’) is within a speci-
fied range near the propagation velocity of
the line [vpy=(LCo)™/2]. This range has been
called the “sonic region” [7], [8], and its
width is dependent on the amplitude of
modulation, M [7], [8].

The differential equation governing the
modulated transmission line is as follows:
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The substitution of (1) into (2) leads to the
following three-term recursion relation [7],
{8], [10], [11] for the time-space harmonic
amplitudes

Vn+1 + DnVn + Vi = 0, (3)

where

kog@ = koa + 2mmn, ko = w/vp, ¢ = 2uw/ks
Up, = (LeCo) 712, m = ¢ [up,.

Furthermore, it has been shown [9] that such
a recursion relation may be used to derive a
dispersion relation (between  and %) in the
form of infinite continued fractions in the
Dy’s as follows:
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Solutions of (4) determine the relationship of
k(w) or w(k), for specified parameters w;,
¢/, and M, to any degree of accuracy desired.
Previous analyses of this type [10], [11] have
not considered interaction effects of all
harmonics (#) in obtaining the propagation
characteristics.

The dispersion relation has been investi-
gated in two cases herein, outside of the
sonic region, where the solutions are valid.
The first case examined is that for which
the pump velocity is less than the propaga-
tion velocity (¢’ <wp,). Here, all interactions
take place where the frequency condition
w>w; is satisfied. The results are shown in
Fig. 2, for the fixed parameters M =0.25
and m=c¢’/vy,=0.25, with the plot nor-
malized to a third parameter: ¢ =2=/k;. The
dispersion curve is that typical of a “stop-
band” in spatially periodic structures and,
indeed, the static modulation case occurs
here in the limit ¢’ =0.

The region of the Brillouin diagram
shown in Fig. 2 is that of the principal inter-
action of the fundamental wave (#=0, for-
ward group velocity) with the first harmonic
(n= —1, backward group velocity). In the
absence of interaction (M =0), the two
waves would be represented on the Bril-
louin diagram by two straight lines at
+45° (not shown) intersecting in the mid-
dle of the stop-band. The corresponding
lines for any of the harmonics for this
structure are described in general by

ka = — 2mn + (koa + 27mn). ©)
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The points of intersection of such lines rep~
resents the regions of strong interaction be-
tween harmonics. It may be recognized that
such intersections for the present basic
structure occur only between waves of op-
posite group velocities, since waves with
group velocities in the same direction are
represented by parallel lines.
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Fig. 2—Brillouin diagram—basic TWPA—non-

inverting modulator case,

The stop-band region shown in Fig. 2
reveals complex values of propagation con-
stants (k), indicating spatially growing and
decaying waves for this interaction, and cor-
responds to parametric down-conversion of
frequencies if o is considered the input
siznal. The result in this case is qualita-
tively the same as that found from coupled-
mode theory [2], [4], [5] insofar as exponen-
tially varying waves are found when signal
and idler waves have oppositely directed
group velocities (i.e., contradirectional
coupling [4]). Finally we note that the real
part of the propagation constant (%) is un-
varying throughout the stop-band—a well-
known phenemenon in purely spatially-
rodulated structures.

The second and more interesting case
treated here is that where the pump velocity
is greater than the propagation velocity of
the unmodulated transmission line. In this
case the interactions take place only in re-
gions where w<wi;, thus corresponding to
conditions of the negative-resistance type of
parametric amplifier (the inverting modu-
lator [6]). In Fig. 3 results are shown for the
evaluation of the dispersion relation for the
case m=1.5 and 3/=0.25. Again, we are
considering the region for which the domi-
nant interaction occurs between the forward-
traveling fundamental (z=0) and the first
backward-traveling harmonic (n= —1).
Here we note a striking behavior for the dis-
persion curve, which shows a stop-band in
tne temporal frequency (ko=w/vy,).

A dispersion curve of the type shown in
Fig. 3 has been discussed by Sturrock {13],
who refers to this type of behavior as a
“non-convective instability.” Sturrock’s dis-
cussion is general, covering all types of

raves, but his applications of the theory to
cate have been to approximate dispersion
relations for electron devices [13] and
plasmas {14]. The case considered herein is,
by contrast, an exact dispersion relation and
for purely electromagnetic waves, wherein
we recognize regions of solutions to the dis-
persion relation which are of the transient
type (i.e., a complex temporal frequency).

Correspondence

Simon [10] has stated that the conditions
described here (w<w:) are similar to those
of the “carcinotron” and applies his ap-
proximate analysis to predict oscillations.
The oscillations are predicted by Simon on
the basis of approximate solutions for the
fundamental and idler waves in a pumped
section of medium of finite length. He finds
that the two waves must start from zero
values inside of the section, each from oppo-
site ends of the section. This, in turn, may
be reconciled outside of the pumped region
only by allowing the two waves to propagate
away from the section in opposite directions
from one another. Simon concludes that
such conditions are self-oscillatory. The dis-
persion relation method described in the
present note, however, predicts the existence
of temporally growing harmonic solutions
for the electromagnetic waves in a pro-
gressively pumped medium of infinite length.
Furthermore, the frequency of oscillation
of this “backward-wave parametric oscil-
lator” may be predicted exactly from the
real part of ko, which remains constant
throughout the inverted stop-band.
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Fig. 3—Brillouin diagram—basic TWPA—inverting
modulator case.

Eidmon {15] has recognized the two fre-
quency conditions described above as being
distinct from one another in the case of in-
teracting plasma waves. Eidmon calls the
harmonics “anomalous Doppler frequencies”
for the case w<wj, in contrast to “normal
Doppler frequencies” for the case w >w;.

In “conclusion, we should note that not
only does the exact solution given here pre-
dict temporal instahilities for the basic
TWPA when <wi, but, furthermore, no
solutions of the spatially growing type exist
for this elementary structure. This last-
mentioned comment is based on the ahsence
of interactions between waves having group
velocities of the same sign for the simple
structure possessing distributed constants.
Sturrock [13] states that true amplification
is possible only when the group velocities of
the two interacting waves are in the same di-
rection (i.e., codirectional coupling [4]). It is
believed, therefore, that (spatial) amplifica-
tion will occur on parametric traveling-wave
circuits, as originally predicted by the Tien
[12] theory, but only on structures capable
of supporting waves having group velocities
of like signs, which allow interactions for
the case w<wi. This last point has been
demonstrated explicitly for the case of an
iterated chain of waveguide cavities by Cur-
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rie and Gould [16], using a method of analy-
sis similar to that used here. Their results
are verified experimentally by Grabowski
and Weglein {17]. Tt is conjectured that the
same situation exists as an interpretation of
other experimental results [3], {18], [19] on
traveling-wave parametric amplification.
On the other hand, it is also possible that
temporal (nonconvective [13]) instabilities
exist on any of these structures. The exist-
ence of such instabilities may be predicted,
as stated above, by ascertaining if intersec-
tions of the unpumped dispersion loci occur
for waves of opposite group velocities (con-
tradirectional waves) when the frequency
condition w <wj is satisfied.

Further results and interpretation on
this subject are in progress by the writer
and will be reported at a later date. The as-
sistance of J. Siegel is gratefully acknowl-
edged for his programming of the solution
of the dispersion relation on the IBM 650
computer.

E. S. Cassepy

Microwave Res. Inst.
Polytechnic Inst. of Brooklyn
Brooklyn, N. Y.
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